D=-A039 574

UNCLASSIFIED

YALE UNIV NeW HAVEN CONN DEPT OF COMPUTER SCIENCE F76 1271 N

ON STRUCTURE PRESERVING REDUCTIONS.(U)

DEC 76 Rad LIPTONs N LYNCH NODOI'&-?S-C-OTSE
RR=-85

..... END

IM}

-7

| o = nee s
lll“z ‘

3.2
= 122 m" zgz

el I

T
=

22 s ne

MICROCOPY RESOLUTION TEST CHART

ADAU39574
\ O
\
m

g DISTRIBUTION ST” TEMENT A |
i Approved for public release;
¢ Distiibution Ualimited

-y

.
B S —
]

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

-~ DBC FiLe copy

A I i AN A SN AU SR 1 s o R 3 i 57

' '
\
ili":
g
/5
: — & & p—
Fo Ry b
(G L i s
\ On Structure Preserving Reductions. - -
B, 1 S -) (/! Vb /

O e Richard J./ Lipton \ 'i-r—— ' o

3 """'_“'—" - - efr e o} e p—

1 Woile Selties /£ 1

A e Botf Sctie D ¢ Research ;@3}395 \{:) 1 9

4 L KIOUNCED O \,/ -4 fiopane T

3 IRTT20) (11, I——— TARYON . :

3 | DISTRILUTICK \ENT &

i E : e A i Approvad for ¢ 1 rclease;
.- | CTRISUTION, AVAILABILITY COJES University of Southern California Distribution U.licited ‘
__ b AAIL sad SPECIAL Florida International University {
' W T 4
E 2,vale University 4
: U3% =
: d
‘ | This work was supported in part by the National Science 3
: Foundation under Grant DCR 92373, and also_in g
| the Office of Naval Research under Grant/N(14-75-C-d752, e i
| @_,_‘\/NS F-3eR-12373 |

/”v A
e et

£ R 4 i A TS A IR E D

Abstract:

The concept of reduction between problems is strengthened.
Certain standard problems are shown to be complete in the new
and stronger sense. Applications to the number of solutions of

particular problems are presented.

keywords: reductions, polynomial time, logspace, complete scts.

I o A ML O O A W AN i TS N M 5 0 A

R e [

1. Introduction

i
r
i
s
@
%

One of the most striking features of a large number of the
known reductions of one problem to another [K] is that they often
preserve a great deal more than they have to. More precisely,

suppose that A is many-to-one polynomial time reducible to B where

D G e i s i T s st

A and B- are, as usual, subsets of I* for some finite alphabet .

Then all that is required in the usual definition is that
(*) vxel*,xe A if and only if f(x) e B,

¥ where f(x) is some polynomial time computable function. Essentially
. (*) states that x has a solution exactly when f(x) has a solution.
?; It appears, however, that quite often x and f(x) are more closcly

' related than this.

This imprecise intuitive feeling that reductions often preserve
additional structure is the subject of this paper. Our principle

result is the introduction of a new kind of reduction and a proof '

that some standard complete problems are also complete in our

strong sense.
The notion that reduction preserves additional structure also
¥ appears in Simon [Si]. His main result is that a number of problems

. are still equivalent when (*) is strengthened to:

x has the same number of solutions as f(x).

S, TR T R L

He calls these equivalent problems parsimonious. There is a diffi-
culty with these results, however; it is not clear what it means

for x to have k' solutions when A is an arbitrary set. Clearly,

e~

either x is in A or it is not. Simon avoids this difficulty by

—

working only with well known and specific problems. In these cases

SR TS S T = ey

it is reasonable to assume that "x has k solutions" is a meaningful

concept. We take an alternative approach. The main virtue of this

NERE T ST

approach is that it allows us to work with arbitrary problems, and

thus we can prove the existence of complete sets.

e i W SRR S e e i

L]
4
A

R
o A,
RIS U -

B e A e o e

2. New Definition of Reduction

The key idea of our new reduction is that we will focus our

attention on relations rather than on sets. Roughly, supposec that
VW xei*, xeA if and only if 3y R(x,y).

The intuitive concept that "x is an instance of A with k solutions"
can be more precisely randered by "there are k y's such that R(x,y)
is true." There are, however, several interesting difficulties in

making this rough idea work correctly. In this direction the next

definition is the key.

Definition: A combination machine is a Turing machine with two

read-only input tapes with end-markers, the first 2-way and the

second l-way, a 2-way read-write worktape and a l-way write-only

output tape. A combination machine is logspace (polynomial timo)
if it always halts and runs within worktape space logarithmic

(within time polynomial) in the length of the first input.

As remarked in [LiL], a set A is in NL, the class of nondcter-
ministic logspace sets (NP, the class of nondeterministic polynomial

time sets) if and only if there exist a polynomial p and a relation

R such that

xeA & Ay)[|lyl < p(Ix]) A R(x,¥)],

and R is computable by a logsbacc (polynomial time) combination

machine.

Now let R and S be arbitrary binary relations, and let r and
s be polynomials. Then we will define reducibility <L(<P)

between (R,r) and (S,s) as follows:

P)
(R,r) jL (<)(S,s) provided there exists an f and g such that

1. f is a function computable by a deterministic logspace (polynomia®

time) transducer 2-way on its input;

;—zv-l?m

bt L LI ik 4B T

2. g is a function computable by a logspace (polynomial time)

combination machine;

i

3. VUx,yel*,

g e e

[%(x,y)hlyl < r(lx]q implies [%(f(x).g(x,y))Alg(x,y)l <s(leE)] | 28
4. g is 1-1 in the sense that \fx,yl,yzcx*,

[:R(x.yl)'\R(X.yz)Alyll < rllxDaly,l < etlxDA glx,y))

- g(x.yz)] implies y, = y,;
5. g is onto in the sense that W¥x,zel*,

Es‘(f(x),z)'\lzl < s(lf(x)lilimplies[ly lyl < r(|x|) AR(x,y)

Ag(er) B]-

This definition, while at first appearing to be quite
complex, is actually a natural extension of the usual one. In
order to see this, observe that the usual definition states that
A is logspace (polynomial time) reducible to B for A and B which
are expressed by

A = {x| 1y [y r(|x|)AR(x,y)} and

| A

"

s(|x|)ASs(x,y)} provided

B = {x|3y |yl

lt\

E [y Iyl <rtxhareuy] @
,< : [ﬁy lyl] < s(]f(x)])A s(f(x).y)] '
where f is some logspace (polynomial time) transduction. Our main

idea is to strengthen this condition by putting into 1-1 corres-

pondence specific witnesses to the two existential quantifiers.

RS L e AL M SO S Ve e

Note that according to our definitions, if (R,r) iL (ip)(s,s)

via f and g, then for any x,
l {yl lyl < xtlxD AaR(x,y))

=|{yl ly| <sClE(x)]) AS(E(x),y)) |

P
Proposition 1: f}(i) is transitive.
Proof: We first consider <L. We need only show that if (R,r)-L {5 ¢ 3
E ‘_——'— L = : : 5
E via f,g and (S,s) < (T,t) via £', g' then (R,r) iL (T,t) via
£* = Axlf*(£(x))] and
g" = Mxx,y[g' (f(x),9(x,y))].

First, f" is a logspace transduction; this follows by standard argu

ments [SM]. Next, we must show that g" is computable by a logspac

combination machine. We compute g"(x,y)=g"'(f(x),9(x,y)) as follow

Simulate g'. The only difficulty is in obtaining the
appropriate bits of the inputs to g' as needed. The
first input is easy: in order to compute the ith bit

of f(x) we need only simulate f(x) from the beginning
until it outputs the ith bit. This works since x is
2-way; a counter must be maintained for i. The second
input is more difficult. 1In order to compute the ith
bit of g(x,y) we simply simulate g(x,y) until it out-
puts the ith bit. The key is that g' asks for these
bits in the same order as produced in the computation

of g(x,y); thus, in the simulation of g(x,y) it suffices
f ¢ to have y on a l-way tape. No counter need be maintained

;"‘ « for i in this case.

We next show £

R Tk & et v

X [R(x.y)“|y| < r(|x|ﬂ implies[%(f"(x),g"(x,y))h|g"(x,y)|Vit(]f"(> Iﬂ.

|
1
|

>

B e - —- s

We have, of course, that

[R(x.y)f\lyl £ r<|xl)Jimplies[swm,g<x,y>)ﬂlg(x,y)! < s(lf(x) l)]
and that
[%(z,w)Alwl < s(lzl;]implies[%(f'(z),q'(z,w))Alg'(z,w)I 2. et 15 i) L

Thus

[%(x,y)A|y| < r(lxli}ﬂé(f(x),q(X.y))Alg(x,y)| £ S(If(x)IJ
S e (E0)) 9" (£(x),9(x,v))) A
lg" (£(x) ,9(x,y))]| < t(lf'(fm)l)],

e~ —

as needed.

Next, we show

A G

4. [%(x,yl)AR(x,yz)nlle < r(IxI)A|y2| £ r(|x|) A g" (x’yl) 4
i :
b o T &
i g" (x,y, implies y;, = y,.
]
4 Assume
]
? R(x,y;)A R(X,yz)A]yl] - r(lxl)ﬂlyzl = r(lx|)A9"(X,yl)=g"(x,y2).
: Now it follows that
b S(f(x),9(x,y;)) and [g(x,y)| £ s(|f(x)|) for i = 1,2.
f i
B Since 9'(f(x),9(x,y;)) = g'(f(x),9(x,y,)), and g' is 1-1, we can : :

conclude that g(x,yl) = g(x,yz). Now since g is 1-1 we finally
conclude that Y, = ¥Y,r as needed.

Finally, we must prove

B i oo ¥ 0 Lok
“at £ L)
. Mg

o

= .
SN VAP AR &> S SN E——

T R T PP g

5. [é(f“(x),z)Alzl L t(lf"(x)lﬂ implies[}y lyl < r(lx])aR(x,y)
A g"(x,y) = z] ;

Assume that T(f"(x),z)alz| < e(|f"(x)|). Since g' is onto
there is a w such that |w| < s(|£(x)|) and S(f(x),w) and g'(f(x),w)=:
Again since g is onto there is an [y| < r(|x[) such that R(x,y)

and g(x,y) = w. Thus

g”(x,y)=g’' (f(x),9(x,y)) = g'(f(x),w) = z, as needed.

,7

Thus, iL is transitive. The corresponding proof for <

is similar and simpler. K

Definition: (S,s) is L-complete (P-complete) if S is a relation

computable by a logspace (polynomial time) combination machine,

s is a polynomial, and for all (R,r), where R is computable by a
logspace (polynomial time) combination machine and r is a polyno-
mial,

(R,x) <° ey NSushy

It is not difficult to show that if (S,s) is L-complete
(P-complete), then ’

{x Ay lyl < s(Ix]|)as(x,y)} is complete in NL (NP) according

to the more usual definitions.

Let SAT(x,y) be "x is a conjunctive normal form Boolean formula
and y is an assignment of true or false to the variables of x
making x true".[K]. SAT is clearly computable by a polynomial time

combination machine. Let s(n) = n.

Proposition 2: (SAT,s) is P-complete.

Proof: Let R be a relation computable by a polynomial time combin-
ation machine M and let r be a polynomial. We will construct a

nondeterministic Turing machine M' from M and r as follows:

NS K 53 LR KR G AR R B i 0 55 < s il i Ml >

G

M' on input x simulates M on inputs of the form (x,y)

by guessing bits of y (including guessing when the end
of y has been reached) when M needs them. M' also keeps
a counter and if M tries to read more than r(|x|) bits

of y, then M' will reject the input x for this series of

guesses. If M rejects (x,y), then M' will also reject
x on the corresponding computation path. If M accepts
then M' will continue to guess bits of y, and it accepts
when it guesses that the end has been reached; again if

it tries to exceed r(|x|) total bits of y then it rejects.

We also require that every guess made by M' be actually "written

' down" when made (at least temporarily) so that distinct values of

2 y satisfying R(x,y) and |yl < r(|x]) will cause M' to follow dis-

s tinct computation paths. Clearly there is a polynomial ¢ such that
M' on any input x and any computation path, halts in at most q(|x]|)
steps; by standard technigues, we can actually assume that any

computation of M' that accepts x halts in exactly q(|x]|) steps.

Now M' is coded into (SAT,s) as in Simon [Si]. 1In order to

show (R,r) < (SAT,s) we obtain the required mappings as follows:

1. f(x) is the Boolean formula obtained by coding the computations

of M' on the input x;

2. g(x,y) is anything we like if |y| > r(|x|); otherwise, let M'
operate on input x and guess precisely the input y when simu-
lating the machine M: then let g(x,y) be the Boolean assign-
ment to the variables of the formula f(x) which describces

this computation.

We may now assert that these functions have the required properties.
; S et P

Properties 1. and 2. of the definition of < are clear. For 3.,

we must show that

=
[R(x,y)Alyl < r(lxlﬂ impliesE(f(x),g(x,ynAIg(x.y)l <s(lea)l.

But this should be clear from the construction of M', f(x) and g(x,y!
To see 4., suppose that R(x,y;), R(x,y,), |yl| < riizly, |y2| < r(|x]
and g(x,yl{ = g(x,yz) are all true. Since M' writes down all its
guesses, it must be the case that ¥y = ¥go

Finally we will show 5. Suppose that S(f(x),z) and
lz] < s(|f(x)]|) are true. Since z encodes the guesses of M', there
must be an input y (since M' only guesses the second input) such
that R(x,y) with |y| < r(|x|) and by construction g(x,y) = z. Thus

g is onto, and hence (SAT,s) is P-complete.

X

We could, of course, extend Proposition 2 to a collection of

other polynomial-computable relations. Rather than pursuing such
results, we turn our attention to relations computable by logspace
combination machines. Let GAP(x,y) be "x encodes an acyclic direc-
ted graph (Savitch [Sa]) with the partial ordering induced by the
edge directions consistent with the total ordering induced by the
node numbering, and y encodes a directed path from start to finish."
Again let s(n) = n. Clearly, GAP is computable by a logspace

combination machine.

Proposition 3: (GAP,s) is L-complete.

Proof: Since this is almost identical to the proof of Proposition
2 we will only sketch it. Let R be a relation computable by a
logspace combination machine M, and let r be a polynomial. Define

M' as follows:

M' on input x simulates M on inputs of the form (x,y)
by guessing bits of y when M needs them. (Note since
M is l-way on this input M' does not have to remember

all of y). M' then operates just as in Proposition 2.

R Kol AL M S g it s M . = - s

Since guesses need only be written down temporarily, there is no
difficulty with the space bound. Clearly M' will be a nondeter- |
ministic logspace Turing machine which we can assume halts for !
any computation in exactly q(|x|) steps, for some polynomial q.

M' is encoded into GAP as in [Sa]. Then f and g are obtained

as follows:
(1) f(x) is the graph obtained by encoding of M' on x.

(2) g(x,y) is anything we like if |y| > r(|lx|). oOtherwise, let
M' on input x with guesses y yield the path g(x,y) through
the graph f(x).

Then (R,x) iL (SAT,s) via this f and g. A key again is that the

computation of M' encodes the actual y it guesses so that g(x,y)

will be 1-1. Eﬁ

We note that Proposition 3 is also extendible to a variety of

other logspace computable relations.

3. Size of Solution Sets for Relations

We consider L-complete (P-complete) (R,r). We wish to give

a complexity classification for
(R,r)k={xl'3 exactly k values of y, |yl < r(|x|)aR(x,y)!

for various values of k. We will first examine specific problems
and then we will use the results of Section 2 to obtain generaliza-
tions. In the following, we let ip, iL, SP and iL represent the
reducibilities used by Karp [K], yoneg ané Laaser i35, Cook 1C]

and Ladner and Lynch {rat], respectively. For convenience, we

let SAT1(x,y) be "x is an arbitrary form Boolean formula and y is

an assignment of true or false to the variables of x making x true."

Let s(n) = n as before. Then it is clear that (SAT1l, s) is

P-complete.

it e L

Sl T

e ik o cnif e il B aac

L e

[
H
E
R
J

~ 3l —

Proposition 4: For any fixed k > 1,

R
(a) (SATl,s)k z (SATl,s)l, and
it

(b) (GAP,s)k & (GAP,s)l.

Proof: (a) We first show (SATl,s)k Ep (SATl,s)l. If % is neot a
m
Boolean formula, define f(x) = x. Otherwise, assume x is of the

form a(xl,...,xn). Let f(x) be the formula obtained by selecting

new disjoint sets of variables {xil""'xin}i“l and expanding

into the appropriate form the expression:

E‘xll""’xln)A a(le,...,x2n)A ...,\a(xkl,...,xkn)

A (X Xgoee ey K X Xone e Xo e <xklxk2"'xkni]

The last line of inequalities is intended to indicate lexicographic
ordering of the given strings. f is computable in polynomial time,

and x has exactly k solutions iff f(x) has exactly 1 solution.

<P : :
Next we show (SI\Tl,s)l i (SATl,s)k. If k=1 there is nothing
m
to prove, so assume k > 2. If x is not a Boolean formula, define

f(x)=x. Otherwise, assume x 1s of the form a(xl,...,xn). et E(x)

be the formula

[%(xl,...,xn) A /\ Xn+i
i=]
k-1 nti ntk-1 s
v X A X
j ! . J
i=1 j=1 j=n+i+1 8

f essentially adds k-1 dummy solutions to x, and so x has exactly

1 solution iff f(x) has exactly k solutions.

L

(b) We first show (GAP,s)k < (GAP,s)l. Assume k > 2., 1If x is

m

(AR 3 o St o B2

4
{

e

not an acyclic directed graph satisfying the given consistency
condition, then let f(x)=x. Otherwise, let : 'ka {0,1}k_l

be a natural 1-1 2k-1l-tupling funétion with the property that

k k
/\ (x; < y;) A \/ (x; <'y;) | implies
i=1 i=1

p(xl,...,xk,al,...,ak_l) <p(yl,...,yk,bl,...,bk_l).

The start node of E(x)F ds (0 o nn, oo 0),

where ng is the start node of x. The goal nede of £{(x) is

(n (n., 1,...,1), where n_, is the goal node of x. The edges

Hggr 22 oty
k=1

G
'-T(/'\J
of graph f(x) will be defined by tupling together edyes of x as

follows:

(p(xl,...,xk,al,...,ak_l), p(yl,...,yk,bl,...,bk_l))
will be an edge of f(x) exactly if:

(1) (xl,...,xk,al,...,ak_l)¢ (nG,...,nG,l,...,l), and
(2) for all 1, 1 %k 2 k=i

(a) either (xi,yi) 1s an edge of %, or x and

(b) one of (bl) - (b3) holds:

i
(bl) a.=0 and x,=x.
X 1

fap ¥ Ng SR heRU RV B

(b2) a;=0 and X;¥X 41 Ng and bi=l and ¥i < ¥

(b3) a;=1 and bi=l’

3 i
RN S

Lt N N e N i 4

b |
1
2
l‘v

-1 =

The reader may verify that f(x) 1s an acyclic directed
graph satisfying the diven consistency condition, and that f(x) ;
is computable from x in logspace. Intuitively, a single path

through f (x) corresponds to parallel simulation of k distinct

paths through x, where a flag is changed from 0 to 1 to indicate
that two "adjacent" paths have just been discovered to diverge
(with the path at the left preceding the path at the right lexi-
cographically. Padding is used for shorter paths in x. With
this intuition, the reader should be able to verily that x has
exactly k solutions iff f(x) has exactly 1 solution.

Finally, we must show (GAP,s)1 ;L (GAP,s)y. But this is

straightforward by a construction which adds k-1 disjoint "dummy

paths" to a graph of the appropriate type. Ea
We now note that a result similar to Proposition 4. must

hold for all complete (R,r). That is, addition of dummy solutions

and collapsing of several solutions to one are constructions which

work for all complete problems. In fact, all such problems nust

be equivalent to each other:

Proposition 5: For any fixed k > 1,

(a) if (R,r) is P-complete, then (R,r)k H (SATl,s)l

and

1"

L

(b) if (R,r) is L-complete, then (R,r)k (GAP,s)l.

m

Proof: By Proposition 4. and the fact that our reducibilitics

and ip preserve cardinality of solution sets (as noted immediately

&

Now that we know that all size problems lie in a common .

prior to Proposition 1).

complexity class, we would like to be able to say more about the
location of this class. The only such information we have so far

arises as a result of the following Proposition. Here, let S=

S A Tl o+~ o ol B T RN s £ S

-
{x|] 3y |yl < s(|x]) A saTl (x,y)} and let é
£
= {x| Ay |yl < s(|x|) ~ GAP (x,y)} , i.e. nondeterministic §
problems of the usual sort. %
g
Proposition 6: ;
S P
(a) If S < A £ 5, then
m T

A € NP iff NP is closed under complement, and

A e P iff P=NP, and

Sl L

(b) if @ <" X < €, then
T

<
m
A e NL iff NL is closed under complement, and

A e L 38E L=NL.

Proof: The arguments are all standard Turing machine constructions,

X

of the type found in [JL] or [LaL], for example.

Finally, we can conclude:

% Proposition 7: For any fixed k > 1,

N “ &

s (a) if (R,r) is P-complete, then

"; (R,r)k € NP iff NP is closed under complement, and
5 ‘ (R,r), € P iff P=NP, and

(b) if (R,r) is L-complete, then °

(R,r)k € NL iff NL is closed under complement, and

1§ (R,r), € L iff L=NL.

i et 55 < s O g i el Ak

.

B
. 2

i o
S o
BRSPS - S v =

- 14 -

Proof:

(a) Because of Propositions 5. and 6., it suffices to show

= P ; . .
SIS (SATl,s)1 < S. To see the first reduction, we use a special

m 1! : R : ;
case of a construction for Proposition 4(a): if x is not a Boolean

|
E
E

formula, define f(x) = x. Otherwise, if x is of the form a(xl,...,x]
let f(x) be the formula‘s(xl,...,xn)A xn+1]"[¥l“ Sl xn/\xn+£]
x has no solutions iff f(x) has exactly one solution.

To see the second reduction, note that (SI\Tl,s)l = AaB, where

A = {x| Aat least k values of y, |y| < s(|x]|) A SATl(x,y)]}

w
]

{x| Jat least k+l values of y, |y| < s(|x|)A SATL(x,y)}.

Clearly A,B are both in NP, so that A ip S and B ip S. Then a
m m

Turing machine with an S-oracle may easily be constructed to decide

membership in (SATl,s)l.

(b) It suffices to show G iL (GaP,s) <" e,

- m T

The first reduction follows by adding a single "dummy path" to a
graph. The second follows from the same argument as in (a), Eﬂ
Of course, the given complexity classification is still very

incomplete; further work remains to be done.

We would expect that there are other interestina properties of
solution sets which are preserved by strong reducibilities such as
ours. Finding the appropriate strength reducibilitiecs needed to

preserve constructions such as those used for approximation, or for |

finding a particular solution when existence is known, seems to be i 9

an interesting area for further study.

Lo o

AT P o AN 3 G AL ' ol i -

(or]

[k]

[(LaL]

[LiL]

[sa]

[si]

[sm]

(c]

‘- 15 -

Cook, S. A. The Complexity of Theorem-Proving Procedures.
Proc. 3rd ACM Symposium in Theory of Computing, 1971,
pp. 151-158.

Jones, N. and Laaser, W. Complete problems for determin-
istic polynomial time, Proceedings of Sixth Annual ACM
Symposium on Theory of Computing, April-May 1974,

pp. 40-46.

Karp, R. M. Reducibility Among Combinaterial Problems.
In Complexity of Computer Computations (R. Miller and
J. Thatcher, ed.) Plenum Press, 1972, pp. 85-104.

Ladner, R. and Lynch, N. A. Relativization of Questions
About Log Space Computability; Math Systems Theory 10,
(1976) pp. 19-32.

Lipton, R. and Lynch, N. A. A Quantifier Characteriza-
tion for Nondeterministic Log Space, SIGACT News,
December 1975, Volume 7, No. 4, pp. 24-26.

Savitch, W. Relations Between Nondeterministic and
Deterministic Tape Complexities, JCSS Vol. 14, 1970
)24 2 P S e DA

Simon, J. On Some Central Problems in Computational
Complexity, Cornell University TR 75-224, 1975.

Stockmeyer, L. and Meyer, A. R. Word Problems Requiring
Exponential Time: Preliminary Report, 5th Annual ACM
Symposium on Theory of Computing 1973, pp. 1-9.

R

L
e
SECURITY CLASSIFICATION CF THIS PAGE (When Data Entersg)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER / 2. GOV ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
{ 85
. .
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
On Structure Preserving Reduction
/ Technical
6. PERFORMING ORG. REPORT NUMEER
. 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Richard J. Lipton //
Nancy Lynch i NO0014-75-C~0752
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK SEIT NUMBERS
Yale University

Department of Computer Science /

10 Hillhouse Ave, New Haven, CT 06520
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
office of Naval Research |
Information Systems Program 13. NUMBER OF PAGES 7 j
Arlington, Virginia 22217 i
|

‘gEC 16

14. MONITORING AGENCY NAME & ADDRESS(if dilferent from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified

15a, DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this report is unlimited ®

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if difterent from Report)

18. SUPPLEMENTARY NOTES

18. KEY WORDS (Continue on reverse side if necessary and identify by block number)
reduction
, polynomial time
logspace
" complete sets

20. ABSTRACT (Continue on reverse side If necessery and identify by block number)
a—

: The concept of reduction between problems is strengthened. Certain
: standard problems are shown to be complete in the new and stronger sense.
| Applications to the number of solutions of particular problems are presented.

oD |52:~;3 1473 EDITION OF 1 NOV 6515 OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data }';rfrrd)

- . — e -

